Tevatron combined Single Top production cross sections

Manfredi Ronzani

Albert-Ludwigs-Universität Freiburg

on behalf of the CDF and DØ Collaborations

EPS-HEP 2015, Vienna, Austria

The Tevatron, CDF and DØ

- Run II: √s = 1.96 TeV
- In operation from 2002 to September 30th, 2011 (Shutdown)
- Total integrated Luminosity delivered by Tevatron: ~12 fb⁻¹
- CDF & DØ luminosity acquired ~10 fb⁻¹ (full dataset)
- Instanteneous luminosity record: ≈ 4.03 · 10³² cm⁻²s⁻¹

Collider Run II Integrated Luminosity

Top quark observed at Tevatron in 1995, by CDF & DØ

Single Top at Tevatron

- Production via EW in 3 channels: s, t, Wt;
- First Observation by CDF & D0 in 2009;
 Phys.Rev. Lett., 103:092002, 2009;
- Tevatron and LHC both sensitive to t-ch; Tevatron not sensitive to Wt-ch but advantage on s-ch! at LHC 5 times more signal but 15 times more background.... will be very challenging also at RunII since processes like ttbar increase more than s-ch production!

$\mathrm{Detector}/\sigma(pb)$	s-ch	t-ch	Wt-ch
Tevatron $(1.96 \text{ TeV})^a$	1.05	2.10	0.25
LHC $(8 \text{ TeV})^b$	5.65	86.5	22
LHC $(13 \text{ TeV})^b$	11.17	218	70.4

^a: arXiv:1311.0283 ^b: arXiv:1506.04072

Motivations

$$\sigma_{\text{single top}} \propto |V_{\text{tb}}|^2$$

- Direct measurement of IV_{tb}I CKM matrix element;
- Does unitarity holds?

$$|V_{ub}|^2 + |V_{cb}|^2 + |V_{tb}|^2 = 1$$

$$\left(egin{array}{cccc} V_{ud} & V_{us} & V_{ub} & V_{uX}? \ V_{cd} & V_{cs} & V_{cb} & V_{cX}? \ V_{td} & V_{ts} & V_{tb} & V_{tX}? \ V_{Yd}? & V_{Ys}? & V_{Yt}? & V_{YX}? \end{array}
ight)$$

Sensitivity to new physics

• t-ch: FCNC

s-ch: heavy W', Top pion

Event Selection and Strategy

<u>1) I+jets</u>

- One high-p_T isolated lepton (e,mu)
- 2 or 3 jets
- At least one b-tag

2) Met+jets (CDF only!)

- No isolated lepton (e,mu)
 - → Leptons vetoed, orthogonal to I+jets
- Large MET > 35 GeV
- 2 or 3 jets
- At least one b-tag

Orthogonal Event Selections: (2) adds 33% acceptance to (1)

Multivariate Analysis

The background uncertainty is larger than the predicted signal

- ⇒ cannot do a simple counting experiment
- → use of Multivariate Techniques (BDT, NN, ME)

Category	TT+TL	1T+LL
tτ̄	357 ± 40	560 ± 57
Diboson	58.7 ± 7.8	279 ± 34
Higgs	12.5 ± 1.0	12.0 ± 0.9
Z+jets	31.6 ± 3.5	190 ± 21
QCD	76 ± 31	326 ± 130
W+HF	712 ± 286	2597 ± 1046
W+LF	66 ± 14	1220 ± 175
t-channel	53.4 ± 6.7	265 ± 30
<i>s</i> -channel	116 ± 12	127 ± 12
Total	1484 ± 403	5574 ± 1501
Data	1231	5338
<u> </u>	- 1 - 17 7	/

CDF lvbb Event Yield

DØ Single Top Analysis

Strategy

- One analysis in I+jets doing everything with 9.7 fb⁻¹ of DØ data
 - ⇒ s-channel, t-channel, s+t channel measurements
- DØ used three different techniques: BDT, BNN, ME
 - Each method selects different event kinematics → Around 75% correlation

s+t cross section

- Combination of the 3 MVAs in a BayesianNN
- 1D posterior obtained for σ_{s+t} integrating over σ_t with no assumption on SM σ_s/σ_t

 $|V_{tb}| > 0.92$ at 95% CL

s-ch VS t-ch cross section

- 2D final discriminant sensitive to s-, t-ch
- Integrating over σ_t and extract σ_s and viceversa

first 3.7σ evidence

PLB 726, 656 (2013)

CDF s+t Analyses

Lepton+jets with $L = 7.5 \text{ fb}^{-1}$

NNs trained with 11-14 variables

PRL 113, 261804 (2014)

• First inclusive measurement with Wt-ch at CDF!

MET+jets with full CDF dateset 9.5 fb⁻¹

- Completely orthogonal dataset to ℓ+jets selection
- Dedicated NN used to discriminate QCD, V+jets and ttbar

CDF s+t Combination

The results of the two s+t analyses (l+jets and MET+jets) are combined by taking the product of their likelihoods and

simultaneously varying correlated uncertainties

$$\sigma_{s+t} = 3.02^{+0.49}_{-0.48} \text{ pb (±16\%)}$$

 $IV_{tb}I > 0.84$ at 95% C.L.

arXiv:1410.4909 submitted to PRL

CDF s-channel Analyses

s-channel I+jets & MET+jets with full CDF dataset 9.5 fb-1

- I+jets and MET+jets s-channel optimized analyses based on Higgs search techniques and selection
- Both use MVA discriminant sensitive to s-channel only

CDF s-ch Combination 4.2σ significance

(2014)

$$\sigma_s = 1.36^{+0.37}_{-0.32}$$
 (stat+syst) pb (±27%)

PRL 112 231805 (2014)

Tevatron Single Top Combinations

Tevatron s-channel Combination

- $L = 9.7 \text{ fb}^{-1}$
- Combine CDF (I+jets and MET+jets) & D0 discriminants (I+jets)
- Extract combined cross section using Bayesian statistical analysis

 Include all systematic uncertainties and takes in account correlations

PRL 112 231803 (2014)

Tevatron s-channel Observation

 $\sigma_s = 1.29^{+0.26}_{-0.24}$ (stat+syst) pb (±19%)

P-value: $1.8x10^{-10} \rightarrow 6.3\sigma$ observed significance

 $(5.1\sigma \text{ expected})$

First observation of s-channel single top production!

PRL 112 231803 (2014)

Tevatron s+t Combination

Last Single Top legacy measurements from Tevatron!

- σ_{s+t} VS σ_{t} with L<9.7 fb⁻¹
- Combines CDF and D0 analysis: same method as s-ch
- Employ s-,t- channel discriminants from D0 and CDF
 - → both fitted simultaneously
- σ_{s+t} obtained by integrating 2D posterior (σ_{s+t} vs σ_t) over σ_t with no assumption on SM σ_s / σ_t

$$\sigma_{\rm t}$$
 = 2.25 +0.29 _{-0.31} pb (±13%)

$$\sigma_{s+t} = 3.30^{+0.52}_{-0.40} \text{ pb (±13\%)}$$

arXiv:1503.05027 submitted to PRL

Tevatron s+t Combination

IV_{tb}I Matrix Element Extraction

- V_{tb}: same MVA discriminants as for s- and t-channel cross sections
- form a Bayesian posterior p.d. for $IV_{tb}I^2$ assuming a "flat" prior with no assumption on SM $\sigma_s^{}/\sigma_t^{}$

 $|V_{tb}| > 0.92$ at 95% C.L.

arXiv:1503.05027 submitted to PRL

Tevatron Single Top Summary

Full Tevatron dataset

up to 9.7 fb^{-1}

Search for W'-> tb

- Several modifications of SM predict the existence of massive, shortlived states decaying to pairs of SM leptons or quarks.
 - → Same topology as single top s-channel can be studied to search for W' boson
- Search is conducted with MET-based trigger requiring or not presence of a charged lepton in final state
- Signal modeled with PYTHIA: W' with $300 \le M_{W'} \le 900 \text{ GeV/c}^2$
- Dominant background: QCD rejected with NN_{QCD}
- Subsamples: #jets and #b-tags (2J1T...3J2T) and type of tag (T,L)

arXiv:1504.01536 accepted by PRL

Search for W'-> tb

- left-right symmetric BSM model with W' bosons of unknown mass and SM weak-coupling to fermions, is used as a benchmark model.
- Considering allowed and forbidden W'-> tb decay to leptons
- Best exclusion limit for M_W
 ['] ≤ 600 GeV/c²!

W' excluded up to 860 (880) GeV/c², for allowed (forbidden) lepton decay modes

arXiv:1504.01536 accepted by PRL

Summary

- Single Top was observed at CDF&D0 in 2009
- Now, Single Top program at Tevatron is complete!
 - ✓ All measurements in agreement with SM prediction!
 - ✓ At least for single top cross section, this is the final measurement by Tevatron!
- s-channel was the last missing block in ST: Observed!
- s+t final Tevatron combination has been performed
- BSM result in single top area presented!

Thanks for the attention!

Backup

CDF and DØ detectors

Signal and Background Modeling

Electroweak/Top: Single Top, ttbar, diboson

- modeled by Monte Carlo (MC)
 - \rightarrow single top: **powheg** (CDF), **Comphep** (DØ)
 - → ttbar: Pythia (CDF), Alpgen (DØ)
 - diboson, WH: PYTHIA
- normalized to theoretical cross section

W+jets:

- modeled by ALPGEN+PYTHIA Monte Carlo (MC)
- normalisation and flavour composition from data

Mistags:

- falsely tagged light quark or gluon jet
- mistag probability from data

Z+jets: modeled by Alpgen+Pythia MC

Multijet:

Normalisation and shape from data-driven model

DØ Single Top Analysis

s+t cross section

- Combination of the 3 MVAs in a BayesianNN
- 1D posterior obtained for σ_{s+t} integrating over σ_t with no assumption on SM σ_s/σ_t

$$\sigma_{s+t} = 4.11^{+0.60}_{-0.55} \text{ pb (±14\%)}$$

$$IV_{tb}I > 0.92$$
 at 95% CL

s-ch VS t-ch cross section

- 2D final discriminant sensitive to s-, t-ch
- \bullet Integrating over σ_t and extract σ_s and vice-versa

$$\sigma_{\rm s}$$
= 1.10 +0.33 _{-0.31} pb (±29%)

$$\sigma_{\rm t}$$
 = 3.07 +0.54 _{-0.49} pb (±17%)

first evidence with 3.7 σ significance

PLB 726, 656 (2013)

Hobit b-tagger at CDF

- A new b-jet identification algorithm optimized for H → bb searches: HOBIT
- Two different HOBIT cuts are used: tight b-tag (T), loose b-tag (L)

CDF Ivbb s+t Analysis

Strategy

- Lepton+jets with 7.5 fb⁻¹ of CDF data
- NNs trained with 11-14 variables
 - Use s-ch as signal in only 2J2T and t-ch for the rest
- Validate data-bg agreement in 0T Control Region
- Use admixture of systematics shifted samples
 - → 3% improvement

Single Top s+t+Wt Cross Section

- maximum likelihood fit to the binned NN output
- Integrate the posterior probability density over the parameters associated with all sources of systematic uncertainties
- First inclusive measurement with Wt-ch at CDF!

$$\sigma_{s+t+Wt} = 3.04 + 0.57_{-0.53}$$
 (stat+syst) pb (± 19%)

$$\sigma_s = 1.81^{+0.63}_{-0.58} \text{ pb}$$

$$\sigma_{(t+Wt)} = 1.66^{+0.53}_{-0.47} \text{ pb}$$

PRL 113, 261804 (2014)

CDF Étbb s+t Analysis

Strategy

- MET+jets with full CDF dataset 9.5 fb-1
- Completely orthogonal dataset to ℓ+jets selection
- Subsamples wrt #jets and #b-tags (2J1T...3J2T)
 - CDF HOBIT multiavariate tagger used
- Dedicated NN used to discriminate QCD, V+jets and ttbar for s-ch and t-ch
- 1D posterior obtained for σ_{s+t} assuming constant SM σ_s/σ_t

Results

$$\sigma_{s+t} = 3.53^{+1.25}_{-1.16}$$
 pb (stat+syst) (± 34%)

 $|V_{tb}| > 0.63$ at 95% CL

arXiv:1410.4909 submitted to PRL

#π+jets QCD rejection (CDF)

CDF s+t Analyses

The results of the two s+t analyses (I+jets and MET +jets) are combined by taking the product of their likelihoods and simultaneously varying correlated uncertainties

$$\sigma_{s+t} = 3.02 + 0.49 -0.48 \text{ pb ($\pm 16\%$)}$$

 $|V_{tb}| > 0.84$ at 95% C.L.

CDF note 11033

Uncertainties

Systematic uncertainty	CDF		D0		Corre-
	Norm	Dist	Norm	Dist	lated
Lumi from detector	4.5%		4.5%		No
Lumi from cross section	4.0%		4.0%		Yes
Signal modeling	2 - 10%	•	3 – 8%		Yes
Background (simulation)	2 - 12%	•	2-11%	•	Yes
Background (data)	15 - 40%	•	19 – 50%	•	No
Detector modeling	2-10%	•	1 - 5%	•	No
b-jet-tagging	10 - 30%		1540%	•	No
JES	0 - 20%	•	9 – 40%	•	No

s-ch Observation

total expected uncertainty: 20%

expected uncertainty w/o systematics: 14%

s+t Tevatron

total expected uncertainty: 13%

expected uncertainty w/o systematics: 8%

IV_{tb}I Measurement

- $\sigma(s+t+Wt) \propto |V_{th}|^2$ so we can extract the matrix element, assuming:

•SM top quark decay:
$$|V_{td}|^2 + |V_{ts}|^2 \ll |V_{tb}|^2$$

•V-A and CP conserving Wtb vertex
• No assumption on # of families or CKM unitarity
$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

additional systematic uncertainties: theoretical uncertainty on single top cross section

Tevatron s+t Combination & BSM

